Computation of Time-Periodic Solutions of the Benjamin-Ono Equation

نویسندگان

  • David M. Ambrose
  • Jon Wilkening
چکیده

We present a spectrally accurate numerical method for finding non-trivial timeperiodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached. By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODEs governing the evolution of solitons using the ansatz suggested by the numerical simulations. ∗Department of Mathematical Sciences, Clemson University, Clemson, SC 29634. Current address: Department of Mathematics, Drexel University, Philadelphia, PA 19104 ([email protected]). This work was supported in part by the National Science Foundation through grant DMS-0926378. †Department of Mathematics and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ([email protected]). This work was supported in part by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation

This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...

متن کامل

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

متن کامل

On the Controllability and Stabilization of the Linearized Benjamin-ono Equation

In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation suc...

متن کامل

Time-Periodic Solutions of the Benjamin-Ono Equation

We present a spectrally accurate numerical method for finding non-trivial timeperiodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010